Features:

- Choice of output configuration
- Printed circuit board mounting
- Opaque plastic housing
- Low profile
- 0.080 " (2.03 mm) wide slot
- 0.275 " (6.99 mm) lead spacing

Description:

The OPB120 through OPB123 devices consist of an infrared emitting diode and a Photologic $®$ sensor (which is a monolithic integrated circuit that incorporates a linear amplifier and a Schmitt Trigger). The OPB120 series have an LED and Photologic® sensor mounted on opposite sides of a 0.080 " (2.03 mm) wide gap of an opaque housing. The OPB12_A series have a molded 0.040 " (1.02 mm) wide apertures located over both the emitter and the Photologic® sensor. The OPB12_B seriesseries have a molded 0.040 " (1.016 mm) wide apertures located over the emitter and 0.010 " (0.254 mm) over the Photologic $®$ sensor. All devices in this series have the added stability utilizing hysteresis built into the amplification circuitry.

The electrical output can be specified as either buffered Totem-Pole (OPB 120A, OPB120B), buffered OpenCollector (OPB121A, OPB121B), Inverted Totem-Pole (OPB122A, OPB122B), or Inverted Open-Collector (OPB123A, OPB123B).

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.
Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing
- Object sensing

Pin \#	Description
1	Anode
2	Cathode
3	$V_{c c}$
4	Output
5	Ground

Ordering Information		
Part Number	Sensor Photologic ${ }^{\circledR}$	Aperture Emitterl Sensor
OPB120A	Totem-Pole	0.04" / 0.04"
OPB120B		0.04" / 0.01"
OPB121A	OpenCollector	0.04" / 0.04"
OPB121B		0.04" / 0.01"
OPB122A	Inverted Totem-Pole	0.04" / 0.04"
OPB122B		0.04" / 0.01"
OPB123A	Inverted OpenCollector	0.04" / 0.04"
OPB123B		0.04" / 0.01"

DIMENSIONS ARE $\operatorname{IN} \operatorname{INCHES}$ AND [MILLIMETERS].
RoHS OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB120 Buffered Totem-Pole

OPB122 Inverted Totem-Pole

OPB121 Buffered Open-Collector

OPB123 Inverted Open-Collector

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Supply Voltage (not to exceed 3 seconds)	10 V
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left(1 / 16\right.$ " $(1.6 \mathrm{~mm})$ from case for 5 seconds with soldering iron) ${ }^{(1)}$	$260^{\circ} \mathrm{C}$

Input Infrared Diode

Input Diode Power Dissipation ${ }^{(2)}$	100 mW
Output Photologic® Power Dissipation $^{(4)}$	200 mW
Total Device Power Dissipation ${ }^{(5)}$	300 mW

Output Photologic ${ }^{\circledR}$

Voltage at Output Lead (Open Collector Output - OPB121, OPB122, OPB123)	35 V
Forward D.C. Current	40 mA
Reverse D.C. Current	2 V

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(3) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0$.
(4) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(5) Derate linearly $6.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(6) Applies to Totem Pole configurations (OPB120A, OPB120B) only.
(7) All parameters tested using pulse technique.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $+70^{\circ}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode (see OP240 for additional information)

V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Output Photologic \circledR^{\circledR} Sensor (see OPL560 for additional information)

$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.75	-	5.25	V	
$\mathrm{I}_{\text {CCL }}$	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
Vol	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{OH}	High Level Output Voltage: Buffered Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Inverted Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
$\mathrm{IOH}^{\text {I }}$	High Level Output Voltage: Buffered Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
	Inverted Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+) / I_{F}(-)$	Hysteresis	-	2	-	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
los	Short Circuit Output Current: Buffered Totem-Pole Output	-20	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(2)} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
	Inverted Totem-Pole Output	-20	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(2)} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
t_{r}, t_{f}	Output Rise Time, Output Fall Time	-	70	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=0 \text { or } 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=8 \mathrm{TTL} \text { Loads (Totem-Pole) } \\ & \mathrm{R}_{\mathrm{L}}=360 \Omega \text { (Open-Collector) } \end{aligned}$
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Low-High \& High-Low	-	5	-	$\mu \mathrm{S}$	

Notes:
(1) Normal application would be with light source blocked, simulated by $I_{F}=00$.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB122A, OPB122B, OPB123A, OPB123B

OPB122A, OPB122B, OPB123A, OPB123B

